CLNode: Curriculum Learning for Node Classification

Xiaowen Wei School of Computer Science Wuhan University Wuhan, China weixiaowen@whu.edu.cn

Bo Du School of Computer Science Wuhan University Wuhan, China gunspace@163.com Xiuwen Gong
Faculty of Engineering
The University of Sydney
Sydney, Australia
xiuwen.gong@sydney.edu.au

Yong Luo School of Computer Science Wuhan University Wuhan, China luoyong@whu.edu.cn Yibing Zhan
JD Explore Academy
Beijing, China
zhanyibing@jd.com

Wenbin Hu*
School of Computer Science
Wuhan University
Wuhan, China
hwb@whu.edu.cn

(WSDM-2023)

code: https://github.com/wxwmd/CLNode

- 1. Introduction
- 2. Approach
- 3. Experiments

Introduction

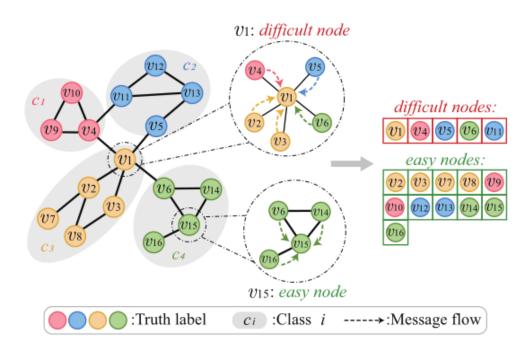


Figure 1: Illustration of node difficulty.

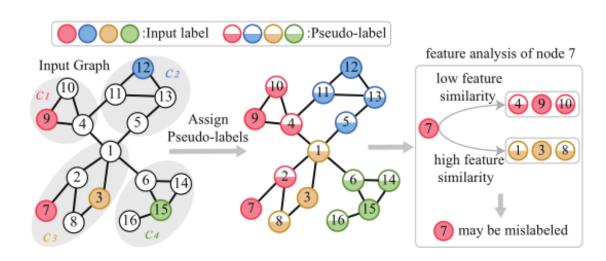


Figure 4: Illustration of the feature-based difficulty measurer.

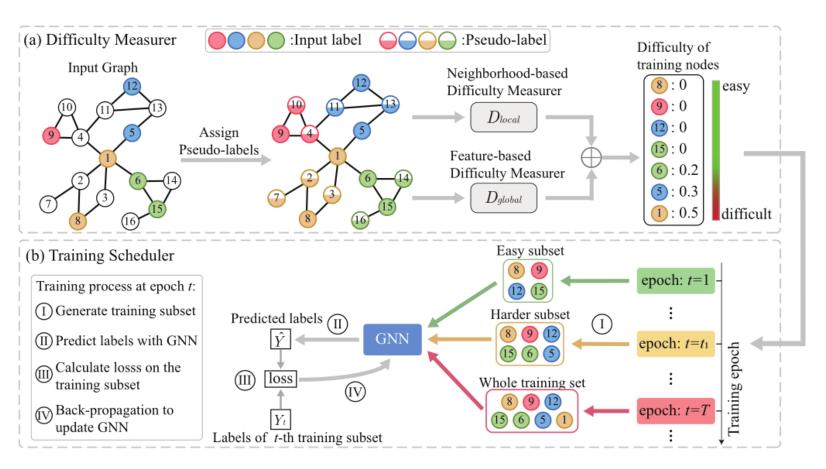


Figure 3: An overall framework of the proposed CLNode.



Figure 3: An overall framework of the proposed CLNode.

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, X)$$
 $\mathcal{N}(i)$ $\mathcal{V}_L = \{v_1, ..., v_I\}$

$$h_i^l = \text{Update}(h_i^{l-1}, \text{Aggregate}(\{h_j^{l-1}|j \in \mathcal{N}(i)\})).$$
 (1)

$$H = f_1(\mathcal{G}),\tag{2}$$

$$Y_P = MLP(H), (3)$$

$$\tilde{Y}[i] = \begin{cases}
Y_L[i], & i \in \mathcal{V}_L \\
Y_P[i], & otherwise.
\end{cases}$$
(4)

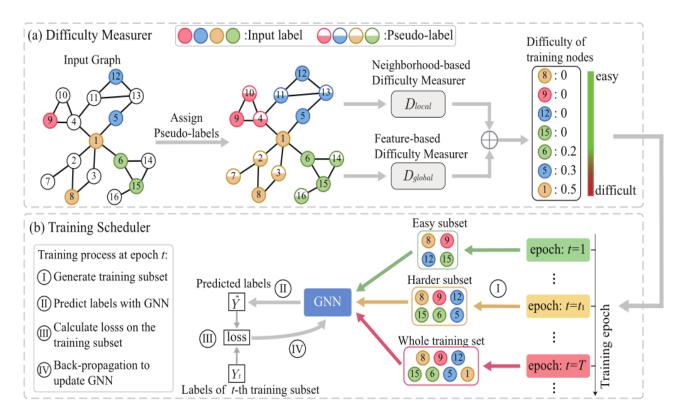


Figure 3: An overall framework of the proposed CLNode.

$$P_c(u) = \frac{\left| \{ \tilde{Y} \left[v \right] = c \mid v \in \hat{\mathcal{N}}(u) \} \right|}{\left| \hat{\mathcal{N}}(u) \right|},\tag{5}$$

$$D_{local}(u) = -\sum_{c \in C} P_c(u) \log(P_c(u)), \tag{6}$$

$$\mathcal{V}_c = \{ v \mid \tilde{Y}[v] = c \},\tag{7}$$

$$h_c = \operatorname{Avg}(h_v \mid v \in \mathcal{V}_c), \tag{8}$$

$$S(u) = \frac{exp(h_u \cdot h_{c_u})}{\max_{c \in C} exp(h_u \cdot h_c)},$$
(9)

$$D_{global}(u) = 1 - S(u). \tag{10}$$

$$D(u) = D_{local}(u) + \alpha \cdot D_{qlobal}(u), \tag{11}$$

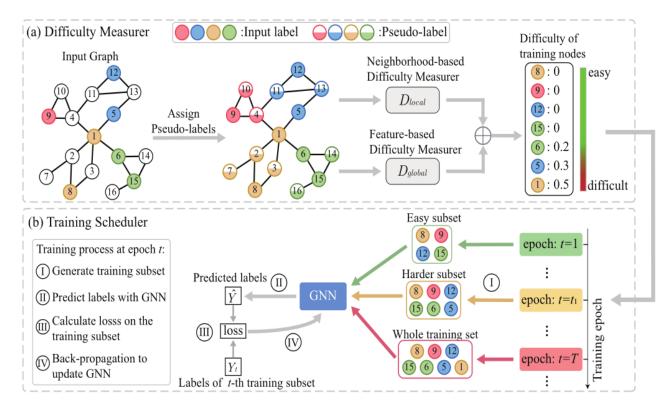


Figure 3: An overall framework of the proposed CLNode.

• linear:

$$g(t) = \min(1, \lambda_0 + (1 - \lambda_0) * \frac{t}{T}). \tag{12}$$

• root:

$$g(t) = \min(1, \sqrt{\lambda_0^2 + (1 - \lambda_0^2) * \frac{t}{T}}). \tag{13}$$

• geometric:

$$g(t) = \min(1, 2^{\log_2 \lambda_0 - \log_2 \lambda_0 * \frac{t}{T}}). \tag{14}$$

Table 1: Statistics of five benchmark datasets.

Dataset	Nodes	Edges	Features	Classes	Label rate
Cora	2708	5429	1433	7	2%
CiteSeer	3327	4732	3703	6	2%
PubMed	19717	88648	500	3	0.1%
A-Computers	13381	245778	767	10	1%
A-Photo	7487	119043	745	8	1%

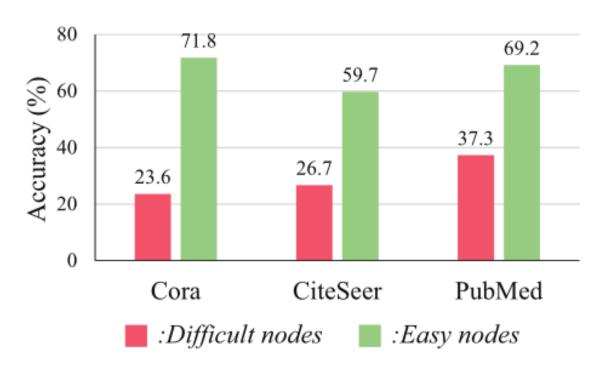


Figure 2: Accuracy of GCN trained on difficult nodes or easy nodes.

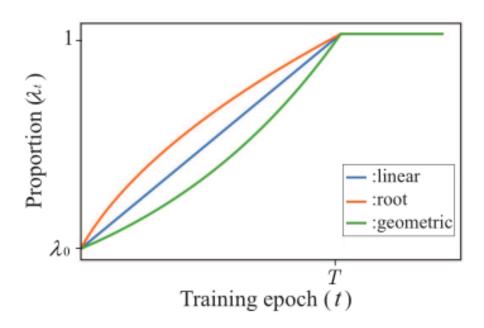


Figure 5: Visualization of three pacing functions.

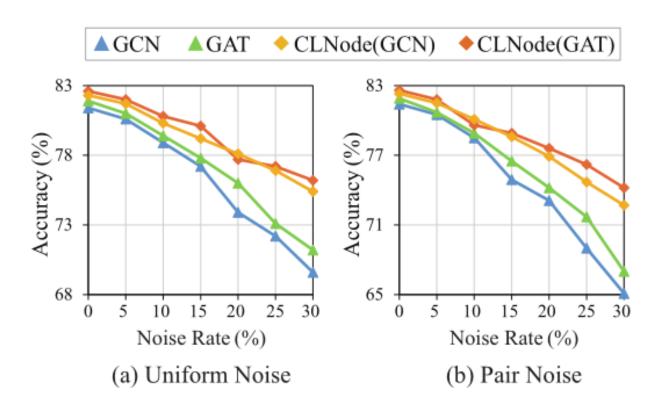


Figure 6: Accuracy (%) on Cora with two kinds of label noise.

Table 2: Node classification performance (Accuracy (%)±Std) on five datasets.

	Method	Cora	CiteSeer	PubMed	A-Computers	A-Photo
GCN	Original	73.5 ± 0.8	62.8±2.6	64.3±2.9	79.0±3.7	89.1±0.8
	+CLNode	77.0 ± 0.7	65.5±2.3	65.9 ± 1.3	84.7±0.5	90.8±1.0
	(Improv.)	3.5%	2.7%	1.6%	5.7%	1.7%
GraphSAGE	Original	70.1±2.3	57.4±3.7	61.3±1.4	71.7±2.4	83.0±2.6
	+CLNode	72.1±1.4	60.3±3.1	64.1±3.8	77.5±1.6	87.5±1.2
	(Improv.)	2.0%	2.9%	2.8%	5.8%	4.5%
GAT	Original	74.2±1.2	63.7±2.8	64.6±2.5	80.2 ± 0.8	89.4±1.8
	+CLNode	77.1±1.1	65.3±2.6	68.2±2.6	82.6±1.1	90.1 ± 1.1
	(Improv.)	2.9%	1.6%	3.6%	2.4%	0.7%
SuperGAT	Original +CLNode (Improv.)	74.4±4.3 75.5±2.7 1.1%	64.8±3.3 63.0±3.2	67.4±4.3 72.2±3.0 4.8%	81.2±2.0 83.4±2.4 2.2%	87.3±2.0 88.8±1.2 1.5%
JK-Net	Original	74.0±1.5	62.1±3.7	66.0±1.7	83.2±1.3	89.2±0.7
	+CLNode	76.8±0.8	63.6±1.2	71.5±3.2	84.4 ± 1.0	90.4±0.9
	(Improv.)	2.8%	1.5%	5.5%	1.2%	1.2%
GCNII	Original	76.2±4.0	64.5±4.3	70.8±6.1	79.8±1.8	87.4±2.1
	+CLNode	77.8±2.1	66.5±2.2	71.3±4.6	82.2±1.5	89.3±2.0
	(Improv.)	1.6%	2.0%	0.5%	2.4%	1.9%

Table 3: Accuracy (%) on Cora under different label rates.

	Method	1%	2%	3%
GCN	Original	62.4 ± 2.7	73.5±0.8	78.6±0.6
	+CLNode	66.9±1.2	77.0 ± 0.7	79.7±0.6
GraphSage	Original	54.8±3.0	70.1±2.3	76.0 ± 0.8
	+CLNode	61.8 ±2.6	72.1 ±1.4	77.7 ± 1.5
GAT	Original	65.2±2.4	74.2±1.2	78.8±1.0
	+CLNode	68.5±2.0	77.1 ± 1.1	79.9 ± 0.5
SuperGAT	Original +CLNode	65.5±6.0 67.9 ±3.2	74.4±4.3 75.5±2.7	78.7±1.6 78.5±2.4
JK-Net	Original	67.5±1.7	74.0±1.5	77.4±1.4
	+CLNode	69.4 ± 1.4	76.8±0.8	78.8±0.3
GCNII	Original	68.5±3.9	76.2±4.0	79.0±2.2
	+CLNode	71.2±3.8	77.8±2.1	80.2±2.0

Table 4: Comparisons between different difficulty measurers.

	Method	Cora	CiteSeer	PubMed
GCN	original	69.6	55.3	69.4
	+CLNode(local)	74.8	61.8	74.2
	+CLNode(global)	72.3	62.5	73.2
	+CLNode	75.4	63.1	74.4

Table 5: Comparisons between different pacing functions.

	Pacing Function	Cora	CiteSeer	PubMed
CLNode	linear root	74.8 74.5	62.7 62.5	74.2 73.9
	geometric	75.4	63.1	74.4

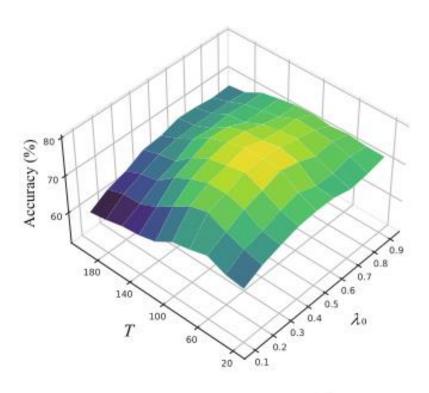


Figure 7: Parameter sensitivity analysis on Cora.

Thank you!